首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的基于最大流的Web社区挖掘算法
引用本文:张金增,范明. 一种改进的基于最大流的Web社区挖掘算法[J]. 计算机应用, 2009, 29(1): 213-216
作者姓名:张金增  范明
作者单位:郑州大学,信息工程学院,郑州,450052;郑州大学,信息工程学院,郑州,450052
摘    要:针对原始最大流算法给每条边的边容量分配一个常量值,在社区质量及成员数量上造成的问题,提出了一种改进的Web社区挖掘算法。该算法考虑不同边的重要性差异,将加权PageRank算法中页面的重要度转化为衡量页面之间边重要性的传递概率值,并使用该值对边容量进行赋值。实验结果表明,改进的算法有效地提高了Web社区的质量。

关 键 词:Web社区  Web图  最大流算法  加权PageRank
收稿时间:2008-07-16

Mining Web community based on improved maximum flow algorithm
ZHANG Jin-zeng,FAN Ming. Mining Web community based on improved maximum flow algorithm[J]. Journal of Computer Applications, 2009, 29(1): 213-216
Authors:ZHANG Jin-zeng  FAN Ming
Affiliation:College of Information Engineering;Zhengzhou University;Zhengzhou Henan 450052;China
Abstract:Given that the original maximum flow algorithm set a fixed edge capacity to each edge, which caused poor quality and improper size of communities, this paper proposed an improved algorithm for mining Web communities. The algorithm considered the differences between edges in terms of importance, and assigned different capacities to different edges by transforming the significant measurements of pages evaluated by weighted PageRank algorithm to edge-transferring probability scores to measure the importance of edges, and assigning them to corresponding edges as their capacities. The experimental results show that the improved maximum flow algorithm improves the quality of Web community effectively.
Keywords:web community  web graph  maximum flow algorithm  weighted PageRank
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号