首页 | 本学科首页   官方微博 | 高级检索  
     

甲烷化抑制剂在微生物电化学合成乙酸系统中的生物抑制效应
引用本文:戚玉娇,BRIDIER Arnaud,DESMOND LE QUEMENER Elie,吕凡,何品晶,BOUCHEZ Th&#,odore.甲烷化抑制剂在微生物电化学合成乙酸系统中的生物抑制效应[J].化工学报,2016,67(5):2033-2040.
作者姓名:戚玉娇  BRIDIER Arnaud  DESMOND LE QUEMENER Elie  吕凡  何品晶  BOUCHEZ Th&#  odore
作者单位:1.同济大学固体废物处理与资源化研究所, 上海 200092;2.法国农业与环境科技研究所(IRSTEA), 巴黎 92761;3.住房与城乡建设部村镇建设司农村生活垃圾处理技术研究与培训中心, 上海 200092
基金项目:法国国家科研署基金项目(BIORARE,ANR-10-BTBR-02);国家自然科学基金项目(21177096,51378375);111引智项目。
摘    要:研究了利用2-溴乙烷磺酸钠(BES)选择性抑制产甲烷菌,从而提高微生物电化学系统合成乙酸产率的可行性,并对比了BES添加前后阴极室微生物菌群结构的变化。结果表明,厌氧混合菌接种物未经BES处理时甲烷是电化学系统CO2还原的主导产物,最大生成速率达0.95 mmol·L-1·d-1,8 d反应时间甲烷中电子回收率达55.0%,16S rRNA测序结果显示固态阴极的主要菌群为Methanobacteriaceae。BES的添加基本抑制了产甲烷菌的活动,使得乙酸成为主导产物,其合成速率最高达2.22 mmol·L-1·d-1,系统总电子回收率达67.3%。Rhodocyclaceae (15.1%),Clostridiaceae(11.9%)、Comamonadaceae(11.1%)和Sphingobacteriales(11.0%)为主要菌群。研究结果表明了微生物电化学合成系统中抑制甲烷生成对调控微生态结构,从而调控电化学终产物的重要性。

关 键 词:微生物电化学合成系统  二氧化碳还原  乙酸合成  2-溴乙烷磺酸钠(BES)  甲烷化抑制剂  控制  选择性  生物过程  
收稿时间:2015-10-08
修稿时间:2015-11-26

Selective inhibition of methanogens using 2-bromoethanesulfonate for improvement of acetate production from CO2 in bioelectrochemical systems
QI Yujiao,BRIDIER Arnaud,DESMOND LE QUEMENER Elie,L&#,Fan,HE Pinjing,BOUCHEZ Th&#,odore.Selective inhibition of methanogens using 2-bromoethanesulfonate for improvement of acetate production from CO2 in bioelectrochemical systems[J].Journal of Chemical Industry and Engineering(China),2016,67(5):2033-2040.
Authors:QI Yujiao  BRIDIER Arnaud  DESMOND LE QUEMENER Elie  L&#  Fan  HE Pinjing  BOUCHEZ Th&#  odore
Affiliation:1.Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China;2.Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes CS10030, 92761 Antony cedex, France;3.Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of PR. China (MOHURD), Shanghai 200092, China
Abstract:In this study, the specific reduction of CO2 to acetate in presence of methanogenesis inhibitor 2-bromoethanesulfonate (BES) was studied in a bio-electrochemical system (BES) via a two stage experimental design. During first stage using untreated mixed anaerobic consortia, the methanogenesis was dominated and the CO2 reduction yielded methane at the maximum rate of 0.95 mmol·L-1·d-1 at nearly 55.0% coulombic recovery. Sequences belonging to the family Methanobacteriaceae were dominant at the cathodic electrode. During second stage, BES addition selectively suppressed the growth of methanogens, which resulted in a shift of the dominant activity to acetogenesis with the maximum production rate of 2.22 mmol·L-1·d-1 with a recovery of 67.3% of electrons in acetate and hydrogen after two duplicates. The main populations were Rhodocyclaceae (15.1%), Clostridiaceae (11.9%), Comamonadaceae (11.1%) and Sphingobacteriales (11.0%). This study highlighted the importance of inhibition of methanogenesis to manoeuvre microbial structures, which decided the final product profiles during a microbial electro synthesis operation.
Keywords:microbial electrosynthesis systems (MES)  carbon dioxide reduction  acetogenesis  2-bromoethanesulfonate (BES)  methanogenesis inhibition  control  selectivity  boiprocess  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号