首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation on the durability of direct methanol fuel cells
Authors:Hou-Chin Cha  Charn-Ying Chen  Jr-Yuan Shiu
Affiliation:Institute of Nuclear Energy Research (INER), 1000, Wenhua Rd., Chiaan Village, P.O. Box 3-14, Lungtan, Taiwan
Abstract:This study addresses the durability of direct methanol fuel cells (DMFCs). Three performance indices including permanent degradation, temporary degradation and voltage fluctuation are proposed to qualify the durability of DMFC. The decay rate, associated with permanent degradation, follows from such failure mechanisms as dissolution, growth and poisoning of the catalyst, while temporary degradation reflects the elimination of the hydrophobic property of the gas diffusion layer (GDL). However, voltage fluctuations reveal different results which cannot stand for degradation phenomenon exactly. In this investigation, such methods of examination as scanning electron microscope (SEM), and X-ray diffraction (XRD) are employed to check the increase in the mean particle size in the anode and cathode catalysts, and the degree is higher in the cathode. The Ru content in the anode catalyst and the specific surface area (SSA) of the anode and cathode catalysts decrease after long-term operation. Moreover, the crossover of Ru from the anode side to the cathode side is revealed by energy dispersive X-ray (EDX) analysis. Electro-catalytic activity towards the methanol oxidation reaction (MOR) at the anode is verified to be weaker after durability test by cyclic voltammetry (CV). Also, the electrochemical areas (ECAs) of the anode and cathode catalysts are evaluated by hydrogen-desorption. SSA loss simply because of agglomeration and growth of the catalyst particles, of course, is lower than ECA loss. The observations will help to elucidate the failure mechanism of membrane electrode assembly (MEA) in durability tests, and thus help to prolong the lifetime of DMFC.
Keywords:Direct methanol fuel cell (DMFC)   Membrane electrode assembly (MEA)   Durability   Decay rate   Cyclic voltammetry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号