首页 | 本学科首页   官方微博 | 高级检索  
     


An LFT approach to parameter estimation
Authors:Kenneth    Tyrone    Greg    Sundeep   Kameshwar   
Affiliation:aDepartment of Mechanical Engineering, University of California, Berkeley, CA 94720, USA;bDivision of Engineering, Colorado School of Mines, Golden, CO 80401, USA;cThe Mathworks Inc., Natick, MA 01760, USA;dQualcomm Technologies, Bedminster, NJ 07921-2608, USA
Abstract:In this paper we consider a unified framework for parameter estimation problems. Under this framework, the unknown parameters appear in a linear fractional transformation (LFT). A key advantage of the LFT problem formulation is that it allows us to efficiently compute gradients, Hessians, and Gauss–Newton directions for general parameter estimation problems without resorting to inefficient finite-difference approximations. The generality of this approach also allows us to consider issues such as identifiability, persistence of excitation, and convergence for a large class of model structures under a single unified framework.
Keywords:System identification   Parameter estimation   Linear fractional transformation   Maximum likelihood
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号