首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural evolution in medium copper low alloy steels irradiated in a pressurized water reactor and a material test reactor
Affiliation:1. Institute of Nuclear Safety System Inc., 64 Sata, Mihima-cho, Mikata-gun, Fukui 919-1205, Japan;2. AEA Technology, Nuclear Science, 220 Harwell, Didcot, Oxfordshire OX11 0RA, UK;1. KTH Royal Institute of Technology, Reactor Physics, 106 91 Stockholm, Sweden;2. Structural Materials Group, Institute of Nuclear Materials Science, SCK·CEN, Boeretang 200, B-2400 Mol, Belgium;1. Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;2. Central Research Institute of Electric Power Industry, 2-11-1 Iwadokita, Komae-shi, Tokyo 201-8511, Japan;3. Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka-shi, Kanagawa 240-0196, Japan;4. Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188, Japan;5. Institute of GIGAKU, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan;6. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;1. Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577, Japan;2. The Japan Materials Testing Reactor, Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393, Japan;3. Center for Computational Science & E-Systems, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan;4. Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan;5. High Fluence Irradiation Facility, The University of Tokyo, Tokai, Ibaraki 319-1188, Japan;1. Studiecentrum voor Kernenergie – Centre D’Études de L’énergie Nucléaire (SCK CEN), NMS Unit, Boeretang 200, Mol, B2400, Belgium;2. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, P.O. Box 510119, Dresden, 01314, Germany;3. EDF-R&D, Département Matériaux et Mécanique des Composants (MMC), Les Renardières, Moret sur Loing Cedex, F-77818, France;4. National Nuclear Laboratory, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK;5. Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK;6. KTH Royal Institute of Technology, Nuclear Engineering, Stockholm, 106 91, Sweden;7. Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, B.P. 12, Saint-Etienne Du Rouvray Cedex, 76801, France;8. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain;1. Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA;2. Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA;3. Materials Department, University of California, Santa Barbara, CA 93106, USA
Abstract:A533B steels containing 0.12% and 0.16% Cu were irradiated to 3×1023 and 6×1023 n/m2 (E>1 MeV) at 290 °C in a pressurized water reactor (PWR) and a material test reactor (MTR). Microstructural changes were examined using atom probe, small angle neutron scattering, field emission gun scanning transmission electron microscopy and post-irradiation annealing (PIA) coupled with positron annihilation (PA) and hardness testing (Hv). Cu rich precipitates had a Cu enriched core with surrounding Ni, Mn and Si rich region and the atomic composition was Fe–(7–16)Cu–(2–8)Mn–(0–4)Ni–(0–4)Si. The size and number density of Cu rich precipitates and the residual Cu concentration in matrix were almost saturated at above 3×1023 n/m2. Low flux irradiation in PWR produced slightly larger precipitates of a lower density with a higher Cu concentration in the precipitates. PIA (PA and Hv) examination showed that vacancy type matrix defects after PWR irradiation were more stable and more effective for hardening than those after MTR irradiation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号