Classification of magnetic resonance images from rabbit renal perfusion |
| |
Authors: | Paman Gujral, Michael Amrhein, Dominique Bonvin, Jean-Paul Vall e, Xavier Montet,Nicolas Michoux |
| |
Affiliation: | aLaboratoire d'Automatique, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland;bDigital Imaging Unit, Department of Radiology, University Hospital of Geneva, CH-1211, Geneva, Switzerland;cUniversité Catholique de Louvain, St-Luc University Hospital, Radiodiagnostic Unit, Avenue Hippocrate 10, B-1200 Brussels, Belgium |
| |
Abstract: | The feasibility of using chemometric techniques for the automatic detection of whether a rabbit kidney is pathological or not is studied. Sequential images of the kidney are acquired using Dynamic Contrast-Enhanced Magnetic Resonance Imaging with contrast agent injection. A segmentation approach based upon principal component analysis (PCA) is used to separate out the cortex from the rest of the kidney including the medulla, the renal pelvic, and the background. Two classifiers (Soft Independent Method of Class Analogy, SIMCA; Partial Least Squares Discriminant Analysis, PLS-DA) are tested for various types of data pre-treatment including segmentation, feature extraction, centering, autoscaling, standard normal variate transformation, Savitsky-Golay smoothing, and normalization. It is shown that (i) the renal cortex contains more discriminating information on kidney perfusion changes than the whole kidney, and (ii) the PLS-DA classifiers outperform the SIMCA classifiers. PLS-DA, preceded by an automated PCA-based segmentation of kidney anatomical regions, correctly classified all kidneys and constitutes a classification tool of the renal function that can be useful for the clinical diagnosis of renovascular diseases. |
| |
Keywords: | Kidney Contrast-enhanced MRI Renal perfusion PCA Segmentation |
本文献已被 ScienceDirect 等数据库收录! |
|