首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of pressure and vibration on the thermal decomposition of cubic Ti1-x Al x N, Ti1-x Zr x N, and Zr1-x Al x N coatings: a first-principles study
Authors:Aijun Wang  Shun-Li Shang  Yong Du  Li Chen  Jianchuan Wang  Zi-Kui Liu
Affiliation:1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, Hunan, People’s Republic of China
2. Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
Abstract:Thermodynamic properties as well as the miscibility gap (binodal) and spinodal decompositions of the cubic Ti1-x Al x N, Ti1-x Zr x N, and Zr1-x Al x N coating alloys have been computed using first-principles calculations. Herein, the cluster expansion method and especially the special quasirandom structure are employed to describe the disordered alloys. The effects of pressure and lattice vibration on the miscibility gaps and spinodal decompositions of the above alloys have been investigated by means of Helmholtz free energy with the vibrational contribution depicted with the Debye-Grüneisen model. It is found that the application of hydrostatic pressure promotes the isostructural decomposition of Ti1-x Al x N, Ti1-x Zr x N, and Zr1-x Al x N alloys, whereas the vibrational contribution decreases the consolute temperature of the phase separation. Our results indicate that the improved age-hardening behavior of cubic Ti1-x Al x N coatings with the addition of Zr arises from the enlarged composition range of binodal and spinodal curves at specified temperatures. Our results are in good agreement with the available experimental data and provide a useful insight into the investigation of age-hardening and characterization of Ti–Al–Zr–N-based coatings for high-temperature applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号