首页 | 本学科首页   官方微博 | 高级检索  
     


Feature Selection Using Probabilistic Neural Networks
Authors:A. Hunter
Affiliation:(1) Department of Computing and Engineering Technology, University of Sunderland, Sunderland, UK, GB
Abstract:Selection of input variables (features) is a key stage in building predictive models. As exhaustive evaluation of potential feature sets using full non-linear models is impractical, it is common practice to use simple fast-evaluating models and heuristic selection strategies. This paper discusses a fast, efficient, and powerful non-linear input selection procedure using a combination of probabilistic neural networks and repeated bitwise gradient descent with resampling. The algorithm is compared with forward selection, backward selection and genetic algorithms using a selection of real-world data sets. The algorithm has comparative performance and greatly reduced execution time with respect to these alternative approaches.
Keywords::Feature selection   Probabilistic neural networks
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号