首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于核变换的高性能支持向量机分类算法
作者姓名:
毕德学
于德敏
许增朴
作者单位:
天津科技大学机械工程学院
摘 要:
由于传统的支持向量机(SVM)算法的核函数没有考虑训练数据自身的特点,因而相对于具体的问题来说,往往不是最优的。为了获得最优的分类结果,提出了一种基于核变换思想的支持向量机分类方法。该方法首先根据训练样本的类属信息,通过对初始核进行线性变换来间接地达到改进输入空间到输出空间的映射函数的目的,同时利用变换后的核函数来求解分类数据特征空间的超平面方程。仿真和实验结果表明,采用此方法,不仅可以提高系统的分类性能和降低噪声的干扰,而且可以增强分类结果的鲁棒性。
关 键 词:
支持向量机
核变换
特征空间
收稿时间:
2008-06-20
修稿时间:
2008-07-15
本文献已被
CNKI
维普
万方数据
等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载
免费
的PDF全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号