首页 | 本学科首页   官方微博 | 高级检索  
     

基于YOLOv5s网络的垃圾分类和检测
作者姓名:王莉  何牧天  徐硕  袁天  赵天翊  刘建飞
作者单位:南京工业大学,南京 211816
基金项目:国家自然科学基金项目(61973334);江苏省大学生创新创业训练计划项目(2024DC0241)
摘    要:目的 为了实现垃圾自动按类处理,通过研究基于视觉的垃圾检测与分类模型,实现对垃圾的自动识别和检测.方法 采用YOLOv5s网络作为垃圾检测与分类的模型,在自制垃圾分类数据集上对网络进行训练,利用训练好的YOLOv5s网络提取不同种类垃圾图像的特征和位置信息,实现垃圾的分类与检测.结果 在真实场景中进行了测试,基于YOLOv5s的垃圾分类检测模型可以有效识别6种不同形态的垃圾,检测mAP值为99.38%,测试精度为95.34%,目标检测速度达到6.67FPS.结论 实验结果表明,基于YOLOv5s网络的垃圾分类检测模型在不同光照、视角等条件下,检测准确率高,鲁棒性好、计算速度快.同时,有助于促进垃圾处理公司实现智能分拣,提高工作效率.

关 键 词:YOLOv5s网络  垃圾分类  目标检测
收稿时间:2021-01-16
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《包装工程》浏览原始摘要信息
点击此处可从《包装工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号