首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于K-L变换和支持向量机的图像分割算法
引用本文:江泓. 一种基于K-L变换和支持向量机的图像分割算法[J]. 电子测量技术, 2006, 29(5): 81-83
作者姓名:江泓
作者单位:江西财经大学会计学院,南昌,330013
摘    要:
提出了一种基于K-L变换和支持向量机结合的图像分割算法,该算法把轴承中的非缺陷区域和缺陷区域分别看作两种不同的纹理模式,先利用可K-l变换对图像进行降维处理,然后用支持向量机方法对两类不同的样本采样学习,最后进行分类判断。实验结果表明,该算法能够较好地实现图像的分割,有着深入研究的价值。

关 键 词:图像分割  K-L变换  支持向量机

Bearing defects detection based on support vector machines
Jiang hong. Bearing defects detection based on support vector machines[J]. Electronic Measurement Technology, 2006, 29(5): 81-83
Authors:Jiang hong
Affiliation:School of Accountancy, Jiangxi University of Finance and Economics, Nanchang 330013
Abstract:
This paper explores an algorithm about dearing surface defects detection by support vector machines that is the new branch of machine learning ,in which the defective area and non-defective area are treated as two different textures and are sampled respectively to be learned, in order to reduce dimension , the image data can be processed by PCA.It is shown that this algorithm works well in defects detection.
Keywords:image segmentation  K-L transformation  support vector machines
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号