首页 | 本学科首页   官方微博 | 高级检索  
     


Tracer studies on an aerated lagoon
Authors:Broughton Alistair  Shilton Andy
Affiliation:CPG New Zealand Ltd, Private Bag 562, Palmerston North, New Zealand.
Abstract:The city of Palmerston North, New Zealand, has two aerated lagoons as its secondary treatment facility. Interest about treatment efficiency led to an investigation into the hydraulics in the second lagoon to determine if further optimisation was viable. A tracer study using rhodamine WT was undertaken to ascertain the stimulus response output. Samples were also taken at 24 points within the lagoon to determine the tracer concentration profile throughout the lagoon. The mean residence time was determined to be 39.9 h compared with a theoretical residence time of 55.4 h. Peak concentration of the tracer at the outlet occurred at 0.44 of the mean residence time. The results of the tracer study pointed to 28% of volume being dead space. A subsequent sludge survey indicated that 26% of the design volume of the lagoon was filled with sludge. While the curved geometry of the lagoon did not appear to impact the hydraulics the fact that the first aerator is confined in a relatively smaller area will have locally boosted the mixing energy input in this inlet zone. From interpretation of the tracer response and the tracer distribution profiles it appears that the aerators are mixing the influent into the bulk flow effectively in the front end of the lagoon and that there was no evidence of any substantive short-circuiting path of concentrated tracer around to the outlet. The tracer distribution profiles gave direct insight as to how the tracer was being transported within the pond and should be used more often when conducting tracer studies. Comparison with the literature indicated that the lagoon's hydraulic efficiency was on par with a baffled pond system and it would be expected that addition of several baffles to the lagoon would provide minimal further improvement.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号