摘 要: | 目的 探究猕猴桃挤压损伤较优的快速无损判别方法。方法 利用高光谱成像系统获得所有猕猴桃的高光谱图像,并提取猕猴桃损伤区域以及完好无损区域的光谱反射率;运用多元散射校正方法对原始反射光谱进行预处理,并运用主成分分析对光谱数据降维;比较并分析Fisher判别分析方法以及简化的K最近邻(Simplified K Nearest Neighbor,SKNN)模式识别方法对猕猴桃挤压损伤的判别效果。结果 在710~850 nm和960~1 030 nm这2个波段内,猕猴桃损伤区域的平均光谱反射率与完好无损区域的平均光谱反射率存在较明显差异;采用主成分分析从256个全波段中筛选了前5个主成分作为新变量,识别模型的检测效率得到了提升;构建的SKNN和Fisher模型对预测集中样本的正确识别率均为93.3%,从SKNN识别模型的混淆矩阵中得出,预测集中仅有2个样本出现误判,并且SKNN模型对校正集中样本的正确识别率高于Fisher模型。结论 在判别猕猴桃挤压损伤时,SKNN识别模型具有相对较好的判别效果。
|