首页 | 本学科首页   官方微博 | 高级检索  
     

猕猴桃挤压损伤高光谱快速检测研究
作者姓名:孟庆龙  冯树南  谭涛  满婷  尚静
作者单位:贵阳学院 食品与制药工程学院,贵阳 550005
基金项目:国家自然科学基金(62141501);贵州省科技计划项目(黔科合基础[2019]1010号);贵州省基础研究计划(科学技术基金)(黔科合基础[2020]1Y270);贵阳学院专项资金(GYU–KY–[2022]);贵州省大学生创新创业训练计划项目(202110976040)
摘    要:目的 探究猕猴桃挤压损伤较优的快速无损判别方法。方法 利用高光谱成像系统获得所有猕猴桃的高光谱图像,并提取猕猴桃损伤区域以及完好无损区域的光谱反射率;运用多元散射校正方法对原始反射光谱进行预处理,并运用主成分分析对光谱数据降维;比较并分析Fisher判别分析方法以及简化的K最近邻(Simplified K Nearest Neighbor,SKNN)模式识别方法对猕猴桃挤压损伤的判别效果。结果 在710~850 nm和960~1 030 nm这2个波段内,猕猴桃损伤区域的平均光谱反射率与完好无损区域的平均光谱反射率存在较明显差异;采用主成分分析从256个全波段中筛选了前5个主成分作为新变量,识别模型的检测效率得到了提升;构建的SKNN和Fisher模型对预测集中样本的正确识别率均为93.3%,从SKNN识别模型的混淆矩阵中得出,预测集中仅有2个样本出现误判,并且SKNN模型对校正集中样本的正确识别率高于Fisher模型。结论 在判别猕猴桃挤压损伤时,SKNN识别模型具有相对较好的判别效果。

关 键 词:猕猴桃  挤压损伤  高光谱成像  主成分分析  快速检测
点击此处可从《包装工程》浏览原始摘要信息
点击此处可从《包装工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号