首页 | 本学科首页   官方微博 | 高级检索  
     


Landmark recognition with compact BoW histogram and ensemble ELM
Authors:Jiuwen Cao  Tao Chen  Jiayuan Fan
Abstract:Along with the rapid development of mobile terminal devices, landmark recognition applications based on mobile devices have been widely researched in recent years. Due to the fast response time requirement of mobile users, an accurate and efficient landmark recognition system is thus urgent for mobile applications. In this paper, we propose a landmark recognition framework by employing a novel discriminative feature selection method and the improved extreme learning machine (ELM) algorithm. The scalable vocabulary tree (SVT) is first used to generate a set of preliminary codewords for landmark images. An efficient codebook learning algorithm derived from the word mutual information and Visual Rank technique is proposed to filter out those unimportant codewords. Then, the selected visual words, as the codebook for image encoding, are used to produce a compact Bag-of-Words (BoW) histogram. The fast ELM algorithm and the ensemble approach using the ELM classifier are utilized for landmark recognition. Experiments on the Nanyang Technological University campus’s landmark database and the Fifteen Scene database are conducted to illustrate the advantages of the proposed framework.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号