首页 | 本学科首页   官方微博 | 高级检索  
     


Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions
Affiliation:1. School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024 Liaoning, China;2. State Key Lab of Rolling Technologies and Automation, Northeastern University, Shenyang, 110819 Liaoning, China;1. State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083, China;2. Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083, China
Abstract:
Simple modeling approaches based on the Hollomon equation, the Johnson–Cook equation, and the Arrhenius constitutive equation with strain-dependent material’s constants were used for modeling and prediction of flow stress for the single-peak dynamic recrystallization (DRX) flow curves of a stainless steel alloy. It was shown that the representation of a master normalized stress–normalized strain flow curve by simple constitutive analysis is successful in modeling of high temperature flow curves, in which the coupled effect of temperature and strain rate in the form of the Zener–Hollomon parameter is considered through incorporation of the peak stress and the peak strain into the formula. Moreover, the Johnson–Cook equation failed to appropriately predict the hot flow stress, which was ascribed to its inability in representation of both strain hardening and work softening stages and also to its completely uncoupled nature, i.e. dealing separately with the strain, strain rate, and temperature effects. It was also shown that the change in the microstructure of the material at a given strain for different deformation conditions during high-temperature deformation is responsible for the failure of the conventional strain compensation approach that is based on the Arrhenius equation. Subsequently, a simplified approach was proposed, in which by correct implementation of the hyperbolic sine law, significantly better consistency with the experiments were obtained. Moreover, good prediction abilities were achieved by implementation of a proposed physically-based approach for strain compensation, which accounts for the dependence of Young’s modulus and the self-diffusion coefficient on temperature and sets the theoretical values in Garofalo’s type constitutive equation based on the operating deformation mechanism. It was concluded that for flow stress modeling by the strain compensation techniques, the deformation activation energy should not be considered as a function of strain.
Keywords:Thermomechanical processing  Hot compression  Constitutive equations  Dynamic recrystallization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号