首页 | 本学科首页   官方微博 | 高级检索  
     


Proteases involved in mammary tissue damage during endotoxin-induced mastitis in dairy cows
Authors:Mehrzad J  Desrosiers C  Lauzon K  Robitaille G  Zhao X  Lacasse P
Affiliation:Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Lennoxville, QC, J1M 1Z3, Canada.
Abstract:
During and after diapedesis, milk polymorphonu-clear neutrophils (PMN) release many proteases that have the potential of degrading extracellular matrix proteins and milk proteins. However, the kinetics of milk proteolysis during inflammation and the underlying mechanisms are poorly defined. The enzymes involved in bovine mammary tissue destruction were investigated in this study using an endotoxin-induced mastitis model. Using zymography techniques, the proteolytic activity of milk and mammary tissue during mastitis was examined. Mastitic milk produced 6 caseolysis bands, 4 of which differed from the ones produced by plasmin. Peak proteolytic activity, bovine serum albumin contents, and mammary tissue damage occurred between 6 and 12 h postchallenge. Mastitic milk proteases hydrolyzed casein, gelatin, collagen, hemoglobin, mammary gland membrane proteins, and lactoferrin. These results confirm that mastitic milk proteases have a broad spectrum of activity. The hydrolytic activity of mastitic milk was partially inhibited by aprotinin, EDTA, 1,10-phenanthroline, leupeptin, and pefabloc. When cocultured with normal mammary tissue, mastitic milk, but not normal milk, caused mammary tissue degradation. In situ zymography of mammary gland showed increased proteolytic activity in mastitic tissue compared with normal tissue. The similarity of zymograms of mastitic milk, blood PMN, milk somatic cells, and PMN strongly suggests that proteases in mastitic milk mainly originate from milk PMN. These results suggest that proteases released by PMN are actively involved in udder tissue damage during mastitis.
Keywords:endotoxin mastitis   mammary gland   matrix metalloproteinase   protease
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号