首页 | 本学科首页   官方微博 | 高级检索  
     


Design,simulation and experiment of electroosmotic microfluidic chip for cell sorting
Affiliation:1. School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore;2. School of Chemical & Biomedical Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore;3. Defense Medical Research Institute, DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore
Abstract:A microfluidic cell sorting chip has been developed using micromachining technology, where electroosmotic flow (EOF) is exploited to drive and switch cells. For this electroosmotically driven system, it is found that the effect of induced hydrostatic pressure caused by unequal levels in solution reservoirs is not negligible. In this work, the numerical simulation of EOF and opposing pressure induced flow in microchannels is presented and the velocity profiles in the microchannels are measured experimentally using microparticle imaging velocimetry (PIV) system. The result shows that the final resulting velocity is the superposition of the two flows. A total volume of 0.305 μl is transported in the 50 μm microchannel and the back flow occurs after 240 s transportation. The task of sorting cells is realized at the switching structure by adjusting the electric fields in the microchannels. The performance of the cell sorting chip is optimized by investigating the effect of different switching structures. A Y-junction switching structure with 90° switching angle is highly recommended with simulated leakage distance of 53 μm and switching time of 8 ms.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号