首页 | 本学科首页   官方微博 | 高级检索  
     


An airborne lidar sampling strategy to model forest canopy height from Quickbird imagery and GEOBIA
Authors:Gang Chen  Geoffrey J. Hay
Affiliation:
  • Foothills Facility for Remote Sensing and GIScience, Department of Geography, University of Calgary, Calgary, AB, Canada T2N 1N4
  • Abstract:
    High-resolution digital canopy models derived from airborne lidar data have the ability to provide detailed information on the vertical structure of forests. However, compared to satellite data of similar spatial resolution and extent, the small footprint airborne lidar data required to produce such models remain expensive. In an effort to reduce these costs, the primary objective of this paper is to develop an airborne lidar sampling strategy to model full-scene forest canopy height from optical imagery, lidar transects and Geographic Object-Based Image Analysis (GEOBIA). To achieve this goal, this research focuses on (i) determining appropriate lidar transect features (i.e., location, direction and extent) from an optical scene, (ii) developing a mechanism to model forest canopy height for the full-scene based on a minimum number of lidar transects, and (iii) defining an optimal mean object size (MOS) to accurately model the canopy composition and height distribution. Results show that (i) the transect locations derived from our optimal lidar transect selection algorithm accurately capture the canopy height variability of the entire study area; (ii) our canopy height estimation models have similar performance in two lidar transect directions (i.e., north-south and west-east); (iii) a small lidar extent (17.6% of total size) can achieve similar canopy height estimation accuracies as those modeled from the full lidar scene; and (iv) different MOS can lead to distinctly different canopy height results. By comparing the best canopy height estimate with the full lidar canopy height data, we obtained average estimation errors of 6.0 m and 6.8 m for conifer and deciduous forests at the individual tree crown/small tree cluster level, and an area weighted combined error of 6.2 m, which is lower than the provincial forest inventory height class interval (i.e., ≈ 9.0 m).
    Keywords:Quickbird   Lidar transect   Geographic Object-Based Image Analysis (GEOBIA)   Forest canopy height
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号