首页 | 本学科首页   官方微博 | 高级检索  
     


From global to local and viceversa: uses of associative rule learning for classification in imprecise environments
Authors:Gianni Costa  Giuseppe Manco  Riccardo Ortale  Ettore Ritacco
Affiliation:1. ICAR-CNR, Via Bucci 41c, 87036, Rende, CS, Italy
Abstract:We propose two models for improving the performance of rule-based classification under unbalanced and highly imprecise domains. Both models are probabilistic frameworks aimed to boost the performance of basic rule-based classifiers. The first model implements a global-to-local scheme, where the response of a global rule-based classifier is refined by performing a probabilistic analysis of the coverage of its rules. In particular, the coverage of the individual rules is used to learn local probabilistic models, which ultimately refine the predictions from the corresponding rules of the global classifier. The second model implements a dual local-to-global strategy, in which single classification rules are combined within an exponential probabilistic model in order to boost the overall performance as a side effect of mutual influence. Several variants of the basic ideas are studied, and their performances are thoroughly evaluated and compared with state-of-the-art algorithms on standard benchmark datasets.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号