首页 | 本学科首页   官方微博 | 高级检索  
     

基于GA-ELM模型的锂电池SOH预测
引用本文:刘凯文,刘聪聪,李珺凯,王桂丽,张持健. 基于GA-ELM模型的锂电池SOH预测[J]. 无线电通信技术, 2019, 0(3): 248-252
作者姓名:刘凯文  刘聪聪  李珺凯  王桂丽  张持健
作者单位:1.安徽师范大学物理与电子信息学院
基金项目:安徽省重点科技攻关项目(1804a09020099)
摘    要:针对锂电池健康状态(State of Healthy,SOH)预测精度低的特点,利用遗传算法改进的极限学习机(Extreme Learning Machine,ELM)算法可提高锂电池SOH的预测精度。ELM输入层到隐含层的权值及隐含层单元的阈值随机产生,ELM算法只需设置隐含层单元的数目及隐含层激活函数类型。相比传统BP算法,ELM算法具有学习速率快、泛化性能好等优点。但由于ELM网络输入层到隐含层的权值和隐含层阈值产生的随机性,ELM算法的稳定性较差。ELM算法中引入遗传算法(GA)优化输入层到隐含层的权值和隐含层单元的阈值,该方法可增强ELM算法的稳定性。实验对比了GA-ELM算法与ELM算法、BP算法、RBF算法及SVR算法对锂电池SOH的预测,结果显示GA-ELM算法相比其他算法在预测精度和算法稳定性上均有提升。

关 键 词:极限学习机  遗传算法  算法融合  模型仿真

Lithium Battery State of Healthy Prediction Based on GA-ELM Model
LIU Kaiwen,LIU Congcong,LI Junkai,WANG Guili,ZHANG Chijian. Lithium Battery State of Healthy Prediction Based on GA-ELM Model[J]. Radio Communications Technology, 2019, 0(3): 248-252
Authors:LIU Kaiwen  LIU Congcong  LI Junkai  WANG Guili  ZHANG Chijian
Affiliation:(School of Physics and Electronic Information,Anhui Normal University,Wuhu 241000,China)
Abstract:In view of the low prediction accuracy of lithium battery state of health (SOH),the extreme learning machine (ELM) algorithm improved by genetic algorithm can improve the prediction accuracy of lithium battery SOH.The ELM input layer to the hidden layer weight and the hidden layer unit threshold are randomly generated.The ELM algorithm only needs to set the number of hidden layer units and the hidden layer activation function type.Compared with the traditional BP algorithm,the ELM algorithm has the advantages of fast learning rate and good generalization performance.However,due to the randomness of the input layer to the hidden layer of the ELM network and the hidden layer threshold,the stability of the ELM algorithm is poor.The genetic algorithm (GA) is introduced into the ELM algorithm to optimize the weight of the input layer to the hidden layer and the threshold of the hidden layer unit.This method can enhance the stability of the ELM algorithm.In the experiments,the lithium battery SOH prediction of GA-ELM algorithm is compared with that of ELM algorithm,BP algorithm,RBF algorithm and SVR algorithm.The results show that the GA-ELM algorithm can improve the prediction accuracy and algorithm stability compared with other algorithms.
Keywords:extreme learning machine  genetic algorithm  algorithm fusion  model simulation
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号