首页 | 本学科首页   官方微博 | 高级检索  
     


Optimizing memory bandwidth exploitation for OpenVX applications on embedded many-core accelerators
Authors:Giuseppe Tagliavini  Germain Haugou  Andrea Marongiu  Luca Benini
Affiliation:1.Department of Electrical Electronic and Information Engineering (DEI),University of Bologna,Bologna,Italy;2.Integrated System Laboratory,ETH Zurich,Zurich,Switzerland
Abstract:In recent years, image processing has been a key application area for mobile and embedded computing platforms. In this context, many-core accelerators are a viable solution to efficiently execute highly parallel kernels. However, architectural constraints impose hard limits on the main memory bandwidth, and push for software techniques which optimize the memory usage of complex multi-kernel applications. In this work, we propose a set of techniques, mainly based on graph analysis and image tiling, targeted to accelerate the execution of image processing applications expressed as standard OpenVX graphs on cluster-based many-core accelerators. We have developed a run-time framework which implements these techniques using a front-end compliant to the OpenVX standard, and based on an OpenCL extension that enables more explicit control and efficient reuse of on-chip memory and greatly reduces the recourse to off-chip memory for storing intermediate results. Experiments performed on the STHORM many-core accelerator demonstrate that our approach leads to massive reduction of time and bandwidth, even when the main memory bandwidth for the accelerator is severely constrained.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号