首页 | 本学科首页   官方微博 | 高级检索  
     

基于宽度学习方法的多模态信息融合
引用本文:贾晨1,刘华平2,3,续欣莹1,孙富春2,3. 基于宽度学习方法的多模态信息融合[J]. 智能系统学报, 2019, 14(1): 150-157. DOI: 10.11992/tis.201803022
作者姓名:贾晨1  刘华平2  3  续欣莹1  孙富春2  3
作者单位:1. 太原理工大学 电气与动力工程学院, 山西 太原 030600;2. 清华大学 计算机科学与技术系, 北京 100084;3. 清华大学 智能技术与系统国家重点实验室, 北京 100084
摘    要:多模态机器学习通过有效学习各个模态的丰富特征来解决不同模态数据的融合问题。考虑到模态间的差异性,基于宽度学习方法提出了一个能够学习和融合两种模态特征的框架,首先利用宽度学习方法分别提取不同模态的抽象特征,然后将高维特征表示在同一个特征空间进行相关性学习,并通过非线性融合得到最后的特征表达,输入分类器进行目标识别。相关实验建立在康奈尔大学抓取数据集和华盛顿大学RGB-D数据集上,实验结果验证了相比于传统的融合方法,所提出的方法具有更好的稳定性和快速性。

关 键 词:宽度学习方法  多模态融合  相关性分析  特征提取  非线性变换  目标识别  神经网络  RGB-D图像分类

Multi-modal information fusion based on broad learning method
JIA Chen,LIU Huaping,,XU Xinying,SUN Fuchun,. Multi-modal information fusion based on broad learning method[J]. CAAL Transactions on Intelligent Systems, 2019, 14(1): 150-157. DOI: 10.11992/tis.201803022
Authors:JIA Chen  LIU Huaping    XU Xinying  SUN Fuchun  
Affiliation:1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030600, China;2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;3. State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China
Abstract:Multi-modal machine learning solves the fusion problem that arises in data with different modalites by effectively learning their rich characteristics. Considering the differences between various modalities, we propose a framework that can learn and fuse two kinds of modal characteristics based on the broad learning method. This method first extracts different abstract characteristics, then represents the high-dimension features in the same space to determine their correlation. We obtain a final representation of these characteristics by nonlinear fusion and inputs these characteristics into a classifier for target recognition. Relevant experiments are conducted on the Cornell Grasping Dataset and the Washington RGB-D Object Dataset, and our experimental results confirm that, compared with traditional fusion methods, the proposed algorithm has greater stability and rapidity.
Keywords:broad learning method   multi-modal fusion   correlation analysis   feature extraction   nonlinear transformation   object recognition   neural networks   RGB-D images classification
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号