首页 | 本学科首页   官方微博 | 高级检索  
     


Oxygen vacancy luminescence and band gap narrowing driven by Ce ion doping with variable valence in SnO2 nanocrystals
Affiliation:1. Institute of Aeronautics and Space, São José dos Campos, SP, 12228-904, Brazil;2. Institute for Advanced Studies, São José dos Campos, SP, 12228-001, Brazil;1. Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China;2. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China;1. Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil;2. Faculdade de Física, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil;3. Departamento de Física, ICEx, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
Abstract:Although considerable research works have witnessed the important modulations of oxygen vacancies on the optical, electrical, and magnetic properties of SnO2 nanostructures, it is not easy to control oxygen vacancy defects in such systems.The difficulty stems from that oxygen vacancy is a kind of atomic defect, and its distribution is sensitive to process conditions and external factors, which makes direct characterization and purposeful control difficult. The purpose of this work on Ce-doped SnO2 nanocrystals is to investigate the tolerance of the host lattice to Ce ions, the population and evolution of Ce3+/Ce4+ ions, and the possibility to adjust oxygen vacancies by Ce3+ ions, and then focus on the influence of oxygen vacancy defects on the band gap and luminescence performance. As Ce doping concentration increases from 0 to 12 at.%, the doped system changes from Ce3+ dominated at low doping amount (≤3 at.%) to Ce3+/Ce4+ coexistence at medium doping concentration (3 at.% ∼ 9 at.%), to occurrence of CeO2 impurity phase at over doping (∼12 at.%). The optimum doping occurs at 6 at.%, which corresponds to the saturated critical point of Ce3+ content and the maximum oxygen vacancy concentration. Importantly, the oxygen vacancies in the current Ce-doped SnO2 nanocrystals is directly regulated by the Ce3+ ion concentration on the Sn sites, which plays an important role in the band gap tuning and visible light emission. With Ce concentration increasing from 0 to 12 at.%, the band gap monotonicity decreases from 3.36 eV to 3.12 eV, while the intensity of the oxygen vacancy luminescence band first increases and then decreases, with the turning point at 6 at.%. Both band gap narrowing effect and enhanced emission indicate that Ce-doped SnO2 should be a promising method to design and manufacture visible light responsive SnO2 based optoelectronic materials by manipulating oxygen vacancy defects.
Keywords:Ce doping  Band gap narrowing  Photoluminescence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号