首页 | 本学科首页   官方微博 | 高级检索  
     


The edge-orientation problem and some of its variants on weighted graphs
Authors:William Chung-Kung Yen
Affiliation:Department of Information Management, Shih Hsin University, #1, Lane 17, Mu-Cha Rd., Sec. 1, Taipei 116, Taiwan
Abstract:Let G(VE) be a connected undirected graph with n vertices and m edges, where each vertex v is associated with a cost C(v) and each edge e = (uv) is associated with two weights, W(u → v) and W(v → u). The issue of assigning an orientation to each edge so that G becomes a directed graph is resolved in this paper. Determining a scheme to assign orientations of all edges such that maxxV{C(x)+∑xzW(xz)} is minimized is the objective. This issue is called the edge-orientation problem (the EOP). Two variants of the EOP, the Out-Degree-EOP and the Vertex-Weighted EOP, are first proposed and then efficient algorithms for solving them on general graphs are designed. Ascertaining that the EOP is NP-hard on bipartite graphs and chordal graphs is the second result. Finally, an O(n log n)-time algorithm for the EOP on trees is designed. In general, the algorithmic results in this paper facilitate the implementation of the weighted fair queuing (WFQ) on real networks. The objective of the WFQ is to assign an effective weight for each flow to enhance link utilization. Our findings consequently can be easily extended to other classes of graphs, such as cactus graphs, block graphs, and interval graphs.
Keywords:Undirected graph   Directed graph   Edge-orientation problem   Trees   NP-hard   Special graphs
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号