首页 | 本学科首页   官方微博 | 高级检索  
     


A cubic-wise balance approach for privacy preservation in data cubes
Authors:Yao Liu  Hui Xiong
Affiliation:a Department of Computer Science, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
b Department of Computer Science, University of Minnesota—Twin Cities
Abstract:
A data warehouse stores current and historical records consolidated from multiple transactional systems. Securing data warehouses is of ever-increasing interest, especially considering areas where data are sold in pieces to third parties for data mining practices. In this case, existing data warehouse security techniques, such as data access control, may not be easy to enforce and can be ineffective. Instead, this paper proposes a data perturbation based approach, called the cubic-wise balance method, to provide privacy preserving range queries on data cubes in a data warehouse. This approach is motivated by the following observation: analysts are usually interested in summary data rather than individual data values. Indeed, our approach can provide a closely estimated summary data for range queries without providing access to actual individual data values. As demonstrated by our experimental results on APB benchmark data set from the OLAP council, the cubic-wise balance method can achieve both better privacy preservation and better range query accuracy than random data perturbation alternatives.
Keywords:Data warehouse   OLAP   Privacy preservation   Range query   Data perturbation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号