首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Various Disinfection Methods on the Material Properties of Silicone Dental Impressions of Different Types and Viscosities
Authors:Joanna Wezgowiec  Anna Paradowska-Stolarz  Andrzej Malysa  Sylwia Orzeszek  Piotr Seweryn  Mieszko Wieckiewicz
Affiliation:1.Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;2.Division of Dentofacial Anomalies, Department of Maxillofacial Orthopedics and Orthodontics, Wroclaw Medical University, 50-425 Wroclaw, Poland
Abstract:
There is an ongoing search for novel disinfection techniques that are not only effective, cheap, and convenient, but that also do not have adverse effects on the properties of dental impressions. We compared the effects of various methods (UVC, gaseous ozone, commercial solution, and spray) on the dimensional change, tensile strength, and hardness of silicone impressions. Moreover, as a secondary aim, we performed a statistical comparison of the properties of nondisinfected addition (Panasil Putty Soft, Panasil monophase Medium, Panasil initial contact Light) and condensation silicones (Zetaplus Putty and Oranwash L), as well as a comparison of materials of various viscosities (putty, medium-bodied, and light-bodied). Our results revealed that addition silicones had higher dimensional stability, tensile strength, and Shore A hardness compared to condensation silicones. Both traditional (immersion and spraying) and alternative methods of disinfection (UVC and ozone) had no significant impact on the tensile properties and dimensional stability of the studied silicones; however, they significantly affected the hardness, particularly of Oranwash L. Our study demonstrated that, similarly to standard liquid disinfectants, both UVC and ozone do not strongly affect the material properties of most silicones. However, before recommendation, their usefulness for each individual material should be thoroughly evaluated.
Keywords:dental materials   ozone   UVC   tensile strength   dimensional stability   hardness
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号