首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的型钢表面多形态微小缺陷检测算法
引用本文:刘亚姣,于海涛,王江,于利峰,张春晖. 基于深度学习的型钢表面多形态微小缺陷检测算法[J]. 计算机应用, 2022, 42(8): 2601-2608. DOI: 10.11772/j.issn.1001-9081.2021060971
作者姓名:刘亚姣  于海涛  王江  于利峰  张春晖
作者单位:天津大学 电气自动化与信息工程学院,天津 300072
河北津西钢铁集团股份有限公司,河北 唐山 064302
基金项目:天津市自然科学基金资助项目(19JCYBJC18800)
摘    要:
为了解决由于型钢表面缺陷形态多样、微小缺陷众多所带来的检测效率低与检测精度差的问题,提出一种基于可变形卷积与多尺度-密集特征金字塔的型钢表面缺陷检测算法——Steel-YOLOv3。首先,使用可变形卷积代替Darknet53网络部分残差单元的卷积层,从而强化特征提取网络对型钢表面多类型缺陷的特征学习能力;其次,设计了多尺度-密集特征金字塔模块:在原有YOLOv3算法的3层预测尺度上增加1层更浅层的预测尺度,再对多尺度特征图进行跨层密集连接,从而增强对密集微小缺陷的表征能力;最后,针对型钢缺陷尺寸分布特点,使用K-means维度聚类方法优化先验框尺寸并将先验框平均分配到4个对应预测尺度上。实验结果表明:Steel-YOLOv3算法具有89.24%的检测平均精度均值(mAP),与Faster R-CNN(Faster Region-based Convolutional Neural Network)、SSD(Single Shot MultiBox Detector)、YOLOv3和YOLOv5算法相比分别提高了3.51%、26.46%、12.63%和5.71%,且所提算法显著提升了微小剥落缺陷的检出率。另外,所提算法的每秒检测图像数量达到25.62张,满足实时检测的要求,可实际应用于型钢表面缺陷的在线检测。

关 键 词:型钢  表面缺陷检测  多形态微小缺陷  深度学习  YOLOv3  
收稿时间:2021-06-08
修稿时间:2021-09-08

Surface detection algorithm of multi-shape small defects for section steel based on deep learning
Yajiao LIU,Haitao YU,Jiang WANG,Lifeng YU,Chunhui ZHANG. Surface detection algorithm of multi-shape small defects for section steel based on deep learning[J]. Journal of Computer Applications, 2022, 42(8): 2601-2608. DOI: 10.11772/j.issn.1001-9081.2021060971
Authors:Yajiao LIU  Haitao YU  Jiang WANG  Lifeng YU  Chunhui ZHANG
Affiliation:School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
Hebei Jinxi Iron and Steel Group Company Limited,Tangshan Hebei 064302,China
Abstract:
In order to solve the problems of low detection efficiency and poor detection precision caused by various surface defects and numerous small defects of section steel, a detection algorithm for surface defects of section steel, namely Steel-YOLOv3, was proposed on the basis of the deformable convolution and multi-scale dense feature pyramid. Firstly, the deformable convolution was used to replace the convolutional layers of part of the residual units in Darknet53 network, which strengthened the feature learning ability of feature extraction network for multi-type defects on the surface of section steel. Secondly, a multi-scale dense feature pyramid module was designed, which means that a shallower prediction scale was added to the 3 prediction scales of the original YOLOv3 algorithm and the multi-scale feature maps were connected across layers, thereby enhancing the ability to characterize dense small defects. Finally, according to the defect size distribution characteristics of section steel, the K-means dimension clustering method was used to optimize the scales of anchor boxes, and the anchor boxes were evenly distributed to 4 corresponding prediction scales. Experimental results show that Steel-YOLOv3 algorithm has a detection mean Average Precision (mAP) of 89.24%, which is improved by 3.51%, 26.46%, 12.63% and 5.71% compared with those of Faster Region-based Convolutional Neural Network (Faster R-CNN), Single Shot multibox Detector (SSD), YOLOv3 and YOLOv5 algorithms respectively. And the detection rate of tiny spalling defects is significantly improved by the proposed algorithm. Moreover, the proposed algorithm can detect 25.62 images per second, which means the requirement of real-time detection can be met and the algorithm can be applied to the online detection for the surface defects of section steel.
Keywords:section steel  surface defect detection  multi-shape small defect  deep learning  You Only Look Once v3 (YOLOv3)  
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号