首页 | 本学科首页   官方微博 | 高级检索  
     

基于轨迹聚类的业务流程剩余时间预测方法
引用本文:徐兴荣,张帅鹏,李婷,郭娜,董乐乐,刘聪,任崇广. 基于轨迹聚类的业务流程剩余时间预测方法[J]. 计算机工程, 2022, 48(11): 247. DOI: 10.19678/j.issn.1000-3428.0063159
作者姓名:徐兴荣  张帅鹏  李婷  郭娜  董乐乐  刘聪  任崇广
作者单位:1. 山东理工大学 计算机科学与技术学院, 山东 淄博 255000;2. 同济大学 嵌入式系统与服务计算教育部重点实验室, 上海 200092
基金项目:国家自然科学基金“基于多实例Petri网的跨组织外包业务过程挖掘关键技术研究”(61902222);山东省泰山学者工程专项基金“跨组织业务过程挖掘方法与应用研究”(tsqn201909109);山东省自然科学基金优秀青年基金项目(ZR202102180934);嵌入式系统与服务计算教育部重点实验室(同济大学)开放基金“跨组织信息服务过程模型挖掘方法”(ESSCKF2021-065);山东省重点研发计划(软科学项目)“基于过程数据分析的医疗临床路径监管与优化方法研究”(2020RKB01177)。
摘    要:
现有的剩余时间预测方法仅关注对剩余时间预测任务起决定性作用的时间特征信息,并未考虑空间特征信息以及异质事件日志对预测任务的影响,导致预测准确度降低。提出基于轨迹聚类的剩余时间预测方法。将不同轨迹间的相似度作为距离度量,通过对事件日志中不同长度的轨迹进行聚类,以降低事件日志复杂度并细化结构。针对业务流程剩余时间预测任务,结合卷积神经网络与准循环神经网络,同时引入双向机制与注意力机制,设计基于注意力机制的卷积准循环神经网络模型,充分地捕获和增强对剩余时间预测任务有决定性影响的时间和空间特征信息,以提高业务流程中上下文事件之间的关联性,从而识别不同事件对业务流程剩余时间预测任务的重要程度。在BPIC_2012_A、BPIC_2012_O、BPIC_2012_W等事件日志数据集上的实验验证了该方法的有效性和可行性,结果表明,相比传统剩余时间预测方法,该方法的预测准确度平均提高约20%,有助于提升业务流程剩余时间的预测质量。

关 键 词:业务流程  剩余时间预测  深度学习  轨迹聚类  卷积准循环神经网络  
收稿时间:2021-11-08
修稿时间:2021-12-23

Business Process Remaining Time Prediction Method Based on Trajectory Clustering
XU Xingrong,ZHANG Shuaipeng,LI Ting,GUO Na,DONG Lele,LIU Cong,REN Chongguang. Business Process Remaining Time Prediction Method Based on Trajectory Clustering[J]. Computer Engineering, 2022, 48(11): 247. DOI: 10.19678/j.issn.1000-3428.0063159
Authors:XU Xingrong  ZHANG Shuaipeng  LI Ting  GUO Na  DONG Lele  LIU Cong  REN Chongguang
Affiliation:1. School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong 255000, China;2. The Key Laboratory of Embedded System and Service Computing of Ministry of Education, Tongji University, Shanghai 200092, China
Abstract:
The existing remaining time prediction methods only focus on the time feature information that plays a decisive role in the remaining time prediction task, and do not consider the impact of spatial feature information and heterogeneous event logs on the prediction task, resulting in a decrease in prediction accuracy.This study proposes remaining time prediction method based on trajectory clustering.The similarity between different trajectories is regarded as a distance measure, and clustering is performed to cluster trajectories with different lengths in the event log to reduce the complexity of the event log and to refine the structure.For the remaining time prediction task of business process, Convolutional Neural Network(CNN) and Quasi-Recurrent Neural Network(QRNN) are combined, and bidirectional and attention mechanisms are introduced to design a Convolutional Quasi-Recurrent Neural Network(CQRNN) model based on the attention mechanism to fully capture and enhance the time and spatial feature information, which significantly affect the remaining time prediction task.The design improves the correlation between contextual events in business process, so as to identify the importance of different events to the business process time prediction task.In experiments labeled as BPIC_2012_A, BPIC_2012_O, and BPIC_2012_W, event log datasets demonstrate the effectiveness and feasibility of the proposed method.The results show that the prediction accuracy of this method is improved by about 20% on average compared with the traditional remaining time prediction method, which is helpful to improve the prediction quality of the business process remaining time.
Keywords:business process  remaining time prediction  deep learning  trajectory clustering  Convolutional Quasi-Recurrent Neural Network(CQRNN)  
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号