首页 | 本学科首页   官方微博 | 高级检索  
     


Semiconductor‐Based Photoelectrochemical Water Splitting at the Limit of Very Wide Depletion Region
Authors:Mingzhao Liu  John L Lyons  Danhua Yan  Mark S Hybertsen
Affiliation:Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, USA
Abstract:In semiconductor‐based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade‐off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n‐SrTiO3 (n‐STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 104 cm?1), by widening the depletion region through engineering its doping density and profile. Graded doped n‐SrTiO3 photoanodes are fabricated with their bulk heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature reoxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. This simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.
Keywords:graded doping  indirect band gap semiconductors  photoelectrochemical water splitting  strontium titanate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号