首页 | 本学科首页   官方微博 | 高级检索  
     

逻辑系统中的拟对偶性与拟排中律
引用本文:孙丽华,张兴芳,李友雨. 逻辑系统中的拟对偶性与拟排中律[J]. 计算机工程与应用, 2012, 48(14): 60-62,73
作者姓名:孙丽华  张兴芳  李友雨
作者单位:聊城大学数学科学学院,山东聊城,252059
基金项目:国家自然科学基金(No.61174099)
摘    要:在经典逻辑和t-模基础逻辑中提出了排中律与拟排中律的新概念,说明经典逻辑(带对偶非的MTL)满足排中律(拟排中律),证明了Go?del模糊逻辑(Lukasiewicz(简称Luk)模糊逻辑)关于最小算子ù与最大算子(关于t-模与t-余模对补算子c)既不满足拟对偶性也不满足拟排中律,检验了Luk模糊逻辑关于Lukt-模与Lukt-余模对?算子满足拟对偶性和排中律。

关 键 词:T-模逻辑  析取范式  拟对偶性  拟排中律

Pseudo duality and pseudo law of excluded middle in logic systems
SUN Lihua , ZHANG Xingfang , LI Youyu. Pseudo duality and pseudo law of excluded middle in logic systems[J]. Computer Engineering and Applications, 2012, 48(14): 60-62,73
Authors:SUN Lihua    ZHANG Xingfang    LI Youyu
Affiliation:School of Mathematical Sciences,Liaocheng University,Liaocheng,Shandong 252059,China
Abstract:It presents the new concepts of the law of excluded middle and the pseudo law of excluded middle,and shows that classical logic(MTL with involutive negation)also holds the law of excluded middle(the pseudo law of excluded middle),and proves that Godel fuzzy logic(Lukasiewicz(short for Luk)fuzzy logic)on minimum operator and maximum operator(on Lukasiewicz t-norm and Lukasiewicz t-conorm for reverse operator c)doesn’t hold pseudo duality and the pseudo law of excluded middle,and Luk fuzzy logic on Luk t-norm and Luk t-conorm for operator holds pseudo duality and the law of excluded middle.
Keywords:T-norm logic  dual disjunctive normal form  pseudo duality  pseudo law of excluded middle
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号