首页 | 本学科首页   官方微博 | 高级检索  
     


Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics in $${\text {}}$$
Authors:A. Mashtakov  R. Duits  Yu. Sachkov  E. J. Bekkers  I. Beschastnyi
Affiliation:1.Institute for Applied Analysis and Numerical Simulation,University of Stuttgart,Stuttgart,Germany
Abstract:Algorithms for automatically selecting a scalar or locally varying regularization parameter for total variation models with an \(L^{\tau }\)-data fidelity term, \(\tau \in \{1,2\}\), are presented. The automated selection of the regularization parameter is based on the discrepancy principle, whereby in each iteration a total variation model has to be minimized. In the case of a locally varying parameter, this amounts to solve a multiscale total variation minimization problem. For solving the constituted multiscale total variation model, convergent first- and second-order methods are introduced and analyzed. Numerical experiments for image denoising and image deblurring show the efficiency, the competitiveness, and the performance of the proposed fully automated scalar and locally varying parameter selection algorithms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号