首页 | 本学科首页   官方微博 | 高级检索  
     


Coexistence of interfacial stress and charge transfer in graphene oxide-based magnetic nanocomposites
Authors:Amodini Mishra  Vikash Kumar Singh  Tanuja Mohanty
Affiliation:1.School of Physical Sciences,Jawaharlal Nehru University,New Delhi,India;2.Solid State Physics Laboratory,Timarpur, New Delhi,India
Abstract:In this paper, the existence of both compressive stress and charge transfer process in hydrothermally synthesized cobalt ferrite–graphene oxide (CoFe2O4/GO) nanocomposites has been established. Transmission electron microscopy results reveal the decoration of CoFe2O4 nanoparticles on GO sheets. Magnetic response of nanocomposites was confirmed from superconducting quantum interference device magnetometer measurement. Optical properties of these nanocomposites were investigated by Raman spectroscopy. The interfacial compressive stress involved in this system has been evaluated from observed blue shift of characteristic G peak of graphene oxide. Increase in the full-width half-maximum value as well as upshift in D and G peaks is clear indications of involvement of charge transfer process between GO sheets and dispersed magnetic nanoparticles. The effect of charge transfer process is quantified in terms of shifting of Fermi energy level of these nanocomposites. This is evaluated from variation in contact surface potential difference using scanning Kelvin probe microscopy. XRD spectra of CoFe2O4/GO confirm the polycrystalline nature of CoFe2O4 nanoparticles. Lattice strain estimated from XRD peaks is correlated with the observed Raman shift.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号