首页 | 本学科首页   官方微博 | 高级检索  
     


Inverse neural network for optimal performance in polygeneration systems
Authors:J.A. Hernández  D. Colorado  O. Cortés-Aburto  Y. El Hamzaoui  V. Velazquez  B. Alonso
Affiliation:1. Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad No.1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico;2. Departamento de Ingeniería Mecatrónica, Universidad Politécnica de Puebla, Tercer Carril del Ejido "Serrano" S/N, San Mateo Cuanalá, Juan C. Bonilla, C. P. 72640, Puebla, Mexico
Abstract:
In this paper, inverse neural network (ANNi) is applied to optimization of operating conditions or parameters in energy processes. The proposed method ANNi is a new tool which inverts the artificial neural network (ANN), and it uses a Nelder-Mead optimization method to find the optimum parameter value (or unknown parameter) for a given required condition in the process. In order to accomplish the target, first, it is necessary to build the artificial neural network (ANN) that simulates the output parameters for a polygeneration process. In general, this class of ANN model is constituted of a feedforward network with one hidden layer to simulate output layer, considering well-known input parameters of the process. Normally, a Levenberg–Marquardt learning algorithm, hyperbolic tangent sigmoid transfer-function, linear transfer-function and several neurons in the hidden layer (due to the complexity of the process) are considered in the constructed model. After that, ANN model is inverted. With a required output value and some input parameters it is possible to calculate the unknown input parameter using the Nelder-Mead algorithm. ANNi results on three different applications in energy processes showed that ANNi is in good agreement with target and calculated input data. Consequently, ANNi is applied to determine the optimal parameters, and it already has applications in different processes with a very short elapsed time (seconds). Therefore, this methodology can be useful for the controlling of engineering processes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号