首页 | 本学科首页   官方微博 | 高级检索  
     


H∞ observer-based event-triggered sliding mode control for a class of discrete-time nonlinear networked systems with quantizations
Affiliation:1. Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116023, China;2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China
Abstract:This paper investigates the problem of H observer-based event-triggered sliding mode control (SMC) for a class of uncertain discrete-time Lipschitz nonlinear networked systems with quantizations occurring in both input and output channels. The event-triggered strategy is used to save the limited network bandwidth. Then, based on the zero-order-hold (ZOH) measurement, a state observer is designed to reconstruct the system state, which facilitates the design of the discrete-time sliding surface. Considering the effects of quantizations, networked-induced constraints and event-triggered scheme, the nonlinear state error dynamics and sliding mode dynamics are converted into a unified linear parameter varying (LPV) time-delay system with the aid of a reformulated Lipschitz property. By using the Lyapunov-Krasovskii functional and free weighting matrix, a new sufficient condition is derived to guarantee the robust asymptotic stability of the resulting closed-loop system with prescribed H performance. And then the observer gain, event-triggering parameter and sliding mode parameter are co-designed. Furthermore, a novel SMC law is synthesized to force the trajectories of the observer system onto a pre-specified sliding mode region in a finite time. Finally, a single-link flexible joint robot example is utilized to demonstrate the effectiveness of the proposed method.
Keywords:Quantization  Event-triggered scheme  Sliding mode control  Discrete-time nonlinear networked systems
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号