首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced transdermal delivery of carvedilol using nanoemulsion as a vehicle
Abstract:The aim of the present study was to develop nanoemulsion as a possible vehicle for enhanced transdermal penetration of carvedilol (CVD). For screening of nanoemulsion components, solubility of CVD in oils, surfactants and co-surfactants was determined. Various surfactants and co-surfactants were screened for their ability to nanoemulsify the selected oily phases. The obtained results indicated that Acconon CC6® had shown good nanoemulsification efficiency (minimum surfactant required S min?=?46.52%?w/w) among the selected surfactants and further improved in presence of CO-20® (S min?=?37.11%?w/w). The ranges of nanoemulsion existence were delineated through the construction of the pseudo-ternary phase diagram at different ratio of surfactant mixture (S/CoS), and various nanoemulsions were selected from phase diagram of S/CoS ratio 1?:?1. The effect of content of oil and S/CoS (1?:?1) on the skin permeation of CVD was evaluated through an excised wistar rat skin using Franz diffusion cell. All the nanoemulsions showed a high skin permeation rate (92.251–161.53?µg/cm2/h), good enhancement ratio (3.5–6.2) and high permeability coefficient in comparison to control groups. The optimised nanoemulsion formulation with the highest skin permeation rate (161.53?µg/cm2/h) consisted of 0.25%?w/w CVD, 12.5%?w/w Miglyol 810®, 50%?w/w Acconon CC6®/CO-20® (1?:?1) and water. The above formulation had the smallest mean globules size (9.28?nm). The superior transdermal flux of CVD may be due to nanorange size of oil globules that lead to intimate contact with the skin layer. These studies suggest that the nanoemulsion system is a promising vehicle for the transdermal delivery of CVD.
Keywords:nanoemulsion  carvedilol  transdermal delivery  pseudo-ternary phase diagram
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号