首页 | 本学科首页   官方微博 | 高级检索  
     

基于谱分解的降阶求根MUSIC算法
引用本文:闫锋刚, 刘秋晨, 邵多, 王军, 王坤, 金铭. 基于谱分解的降阶求根MUSIC算法[J]. 电子与信息学报, 2017, 39(10): 2421-2427. doi: 10.11999/JEIT170024
作者姓名:闫锋刚  刘秋晨  邵多  王军  王坤  金铭
作者单位:1.(哈尔滨工业大学(威海) 威海 264209) ②(西安电子科技大学 西安 710071) ③(中国人民解放军63891部队 洛阳 471023)
基金项目:国家自然科学基金(61501142),中国博士后科学基金 (2015M571414),威海市科技攻关和哈尔滨工业大学(威海)学科建设引导基金(WH20160107),中央高校基本科研业务费专项资金(HIT.NSRIF.201725)
摘    要:求根多重信号分类(Root-MUSIC)算法以多项式求根代替谱峰搜索,降低了波达方向(DOA)估计的计算量,但当阵元数较大时,其计算量依然很大。为进一步降低计算量,该文提出一种降阶Root-MUSIC(RD-Root-MUSIC)算法。该算法基于谱分解将Root-MUSIC多项式的阶次降低一半,再根据矩阵特征多项式与求根多项式的关系构造友阵,采用Arnoldi迭代计算得到友阵的L个大特征值(L为信号数)并估计DOA。仿真结果表明,RD-Root-MUSIC估计精度与Root-MUSIC相近,但其在大阵元下具有比Root-MUSIC更低的计算量。

关 键 词:波达方向估计   求根多重信号分类算法   谱分解   Arnoldi迭代   降阶Root-MUSIC
收稿时间:2017-01-09
修稿时间:2017-05-22

Reduced-dimension Root-MUSIC Algorithm Based on Spectral Factorization
YAN Fenggang, LIU Qiuchen, SHAO Duo, WANG Jun, WANG Kun, JIN Ming. Reduced-dimension Root-MUSIC Algorithm Based on Spectral Factorization[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2421-2427. doi: 10.11999/JEIT170024
Authors:YAN Fenggang  LIU Qiuchen  SHAO Duo  WANG Jun  WANG Kun  JIN Ming
Affiliation:1. (Harbin Institute of Technology at Weihai, Weihai 264209, China);;2. (Xidian University, Xi’
Abstract:The Root MUltiple SIgnal Classification (Root-MUSIC) algorithm uses polynomial rooting instead of spectral search to reduce the computational complexity of Direction-Of-Arrival (DOA) estimation. However, when large numbers of sensors are exploited, this algorithm is still time-consuming. To further reduce the complexity, a novel Reduced-Dimension Root-MUSIC (RD-Root-MUSIC) algorithm based on spectral factorization is proposed, in which the dimension of polynomial involved in the rooting step is efficiently reduced to half. A companion matrix whose eigenvalues correspond to the roots of the reduced-dimension polynomial is further constructed, and the Arnoldi iteration is finally used to calculate only the L largest eigenvalues containing DOA information, where L is the number of signals. Simulation results show that RD-Root-MUSIC has a similar performance with much lower complexity as compared to Root-MUSIC.
Keywords:Dirction-Of-Arrival (DOA) estimation  Root MUltiple SIgnal Classification (Root-MUSIC) algorithm  Spectral factorization  Arnoldi iteration  Reduced-Dimension Root-MUSIC(RD-Root-MUSIC)
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号