摘 要: | 电能质量扰动信号识别是电能质量扰动参数分析、扰动源定位和综合治理的前提。针对S变换在电能质量扰动信号分析中特征表现能力不足,以及极限学习机随机设置输入权值和隐藏层阈值造成识别准确率低的问题,提出一种基于广义S变换(generalized S-transform,GST)和粒子群(particle swarm optimization,PSO)优化极限学习机(extreme learning machine,ELM)的电能质量扰动信号识别新方法。首先,将粗调、微调和精调因子引入S变换的高斯窗函数中,并根据扰动信号的频率特点调整各因子值,从而获得更具针对性的时-频分辨率,以增强特征表现能力。其次,利用PSO的寻优能力,获取最大适应度时对应的输入权值和隐藏层阈值,提升ELM的识别准确率。最后,根据GST时-频模矩阵生成特征集,对PSO-ELM进行训练并测试其识别能力。对比实验表明,相较于S变换和ELM方法,本文提出方法识别准确率更高、抗噪性更强,能够满足工业环境下的电能质量扰动信号识别需要。
|