首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic detection of oil spills from SAR images
Authors:F. Nirchio  M. Sorgente  A. Giancaspro  W. Biamino  E. Parisato  R. Ravera
Affiliation:1. ASI , Geodesy Space Centre , Loc. Terlecchia, 75100 Matera, Italy;2. Telespazio , Geodesy Space Centre , Loc. Terlecchia, 75100 Matera, Italy;3. Università del Piemonte Orientale ‘Amedeo Avogadro’ , Via Bellini 25/g, 15100 Alessandria, Italy
Abstract:A probabilistic method has been developed that distinguishes oil spills from other similar sea surface features in synthetic aperture radar (SAR) images. It considers both the radiometric and the geometric characteristics of the areas being tested. In order to minimize the operator intervention, it adopts automatic selection criteria to extract the potentially polluted areas from the images. The method has an a priori percentage of correct classification higher than 90% on the training dataset; the performance is confirmed on a different dataset of verified slicks. Some analyses have been conducted using images with different radiometric and geometric resolutions to test its suitability with SAR images different from European Remote Sensing (ERS) satellite ones. The system and its ability to detect and classify oil and non‐oil surface features are described. Starting from a set of verified oil spills detected offshore and over the coastline, the ability of SAR to reveal oil spills is tested by analysing wind intensity, deduced from the image itself, and the distance from the coast.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号