首页 | 本学科首页   官方微博 | 高级检索  
     

基于独立分量分析的人耳识别方法
引用本文:徐正光,武楠,穆志纯. 基于独立分量分析的人耳识别方法[J]. 计算机工程, 2006, 32(19): 178-180
作者姓名:徐正光  武楠  穆志纯
作者单位:北京科技大学信息学院,北京,100083
摘    要:
应用独立分量分析(ICA)方法从高阶统计相关性角度出发提取人耳图像的特征变量,并采用基于欧氏距离测度的最近距离分类器进行人耳图像的识别。与传统的主成分分析(PCA)方法相比具有更好的鉴别能力。通过与PCA的对比实验结果表明,该方法具有更高的识别率,对姿态和光照的变化也具有较好的鲁棒性。

关 键 词:人耳识别  独立分量分析  主成分分析  最近距离分类器
文章编号:1000-3428(2006)19-0178-03
收稿时间:2005-10-20
修稿时间:2005-10-20

Ear Recognition Method Based on Independent Component Analysis
XU Zhengguang,WU Nan,MU Zhichun. Ear Recognition Method Based on Independent Component Analysis[J]. Computer Engineering, 2006, 32(19): 178-180
Authors:XU Zhengguang  WU Nan  MU Zhichun
Affiliation:Information School, Beijing University of Science and Technology, Beijing 100083
Abstract:
This paper puts forward a new method of ear recognition.In this method,independent component analysis(ICA) which considers the high-order statistics and obtains the inner character of images,is applied to extract ear feature,and then adopts the nearest distance classification based on Euclidean distance to recognize the ear image.Compared with principal component analysis(PCA),the ICA has a better identify ability.The result of experiments shows that the ICA algorithm is more efficient and has better robust to illumination and pose variation.
Keywords:Ear recognition  Independent component analysis(ICA)  Principal component analysis(PCA)  Nearest distance classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号