首页 | 本学科首页   官方微博 | 高级检索  
     


Neural dynamics, bifurcations, and firing rates in a quadratic integrate-and-fire model with a recovery variable. I: Deterministic behavior
Authors:Shlizerman Eli  Holmes Philip
Affiliation:Department of Applied Mathematics, University of Washington, Seattle, WA 98195-2420, U.S.A. shlizee@uw.edu
Abstract:We study the dynamics of a quadratic integrate-and-fire model of a single-compartment neuron with a slow recovery variable, as input current and parameters describing timescales, recovery variable, and postspike reset change. Analysis of a codimension 2 bifurcation reveals that the domain of attraction of a stable hyperpolarized rest state interacts subtly with reset parameters, which reposition the system state after spiking. We obtain explicit approximations of instantaneous firing rates for fixed values of the recovery variable, and use the averaging theorem to obtain asymptotic firing rates as a function of current and reset parameters. Along with the different phase-plane geometries, these computations provide explicit tools for the interpretation of different spiking patterns and guide parameter selection in modeling different cortical cell types.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号