Significant Improvement of Superconducting Properties in Nano‐NiFe2O4‐Doped Y–Ba–Cu–O Single‐Grain Superconductor |
| |
Authors: | Guo‐Zheng Li Lei Dong Xiang‐Yun Deng |
| |
Affiliation: | College of Physics and Materials Science, Tianjin Normal University, Tianjin, China |
| |
Abstract: | Introduction of refined second‐phase particles in superconducting YBa2Cu3O7?x (Y‐123) matrix is known to be an effective route to improve the δl‐type pinning and the performance of Y–Ba–Cu–O (YBCO) single‐grain superconductors, while the δTc‐type pinning induced by spatial fluctuations in matrix composition is also important and contributes to the in‐field Jc performance and high‐field applications of bulk superconductors. In this communication, chemical doping of nano‐sized NiFe2O4 (mean size 50 nm) in single‐grain YBCO superconductor is performed using a novel top‐seeded infiltration growth (TSIG) technique based on a solid source pellet (SSP) of nano‐Y2O3 + BaCuO2. The results indicate that, significant improvement of bulk performances including levitation force (33.93 N) and trapped field (0.3628 T) has been observed in the 0.2 wt% nano‐NiFe2O4‐doped sample, which are much higher than the undoped sample (28.81 N and 0.2754 T). Tc measurement indicates that, a decreased onset Tc of about 87.5 K and a broadened transition width of about 5 K are observed in the NiFe2O4‐doped sample, indicating appearance of weak superconducting regions in superconducting matrix caused by Ni and Fe substitutions in Y‐123 crystal lattice. This study supplies a practical approach to increase the YBCO bulk performance significantly. |
| |
Keywords: | |
|
|