首页 | 本学科首页   官方微博 | 高级检索  
     


Elevated Temperature Strength Enhancement of ZrB2–30 vol% SiC Ceramics by Postsintering Thermal Annealing
Authors:William G Fahrenholtz
Abstract:The mechanical properties of dense, hot‐pressed ZrB2–30 vol% SiC ceramics were characterized from room temperature up to 1600°C in air. Specimens were tested as hot‐pressed or after hot‐pressing followed by heat treatment at 1400°C, 1500°C, 1600°C, or 1800°C for 10 h. Annealing at 1400°C resulted in the largest increases in flexure strengths at the highest test temperatures, with strengths of 470 MPa at 1400°C, 385 MPa at 1500°C, and 425 MPa at 1600°C, corresponding to increases of 7%, 8%, and 12% compared to as hot‐pressed ZrB2–SiC tested at the same temperatures. Thermal treatment at 1500°C resulted in the largest increase in elastic modulus, with values of 270 GPa at 1400°C, 240 GPa at 1500°C, and 120 GPa at 1600°C, which were increases of 6%, 12%, and 18% compared to as hot‐pressed ZrB2–SiC. Neither ZrB2 grain size nor SiC cluster size changed for these heat‐treatment temperatures. Microstructural analysis suggested additional phases may have formed during heat treatment and/or dislocation density may have changed. This study demonstrated that thermal annealing may be a useful method for improving the elevated temperature mechanical properties of ZrB2‐based ceramics.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号