首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of butterfly-like BiVO4/RGO nanocomposites and their photocatalytic activities
Authors:Liangliang Zhang  Aolan Wang  Nan Zhu  Baochang Sun  Yan Liang  Wei Wu
Affiliation:1.State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;2.Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China;3.Beijing Urban Drainage Monitoring Center Co., Ltd., Beijing 100061, China
Abstract:A simple and high efficient method was proposed for the synthesis of uniform three dimensional (3D) BiVO4/reduced graphene oxide (RGO) nanocomposite photocatalyst by adopting the microwave assistant and using Bi(NO3)3·5H2O, graphene oxide (GO) and NH4VO3 as precursor. The as-obtained composites were well characterized with the aid of various techniques to study the morphology, structure, composition, optimal and electrical property. In the as-obtained composites, the GO sheets were fully reduced into RGO, and monoclinic structure BiVO4 crystallized completely into butterfly-like BiVO4 lamellas and well bonded with the RGO lamellas. The length and the width of the butterfly-like BiVO4 particle were about 1.5 μm, and the thickness of the flake was about 20 nm. Photocatalytic performances of BiVO4/RGO composite and pure BiVO4 particle have been evaluated by investigating the reduction of Cr(VI) ion-contained wastewater under simulated solar light irradiation, where the BiVO4/RGO composite displayed enhanced photocatalytic activity. It is found that the pseudo-first-order rate constants (k) for the photocatalytic reduction of Cr (VI) by BiVO4/RGO composite was about 4 times as high as that of the pure BiVO4. The present work suggested that the combination of BiVO4 and RGO displayed a remarkable synergistic effect, which led to enhanced photo-catalytic activity on Cr(VI) reduction.
Keywords:Reduced graphene oxide  Bismuth vanadate  Nanocomposites  Microwave  Photo-reduction
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号