首页 | 本学科首页   官方微博 | 高级检索  
     

大数据下的深度学习研究
引用本文:王金甲,陈浩,刘青玉. 大数据下的深度学习研究[J]. 高技术通讯, 2017, 27(1). DOI: 10.3772/j.issn.1002-0470.2017.01.004
作者姓名:王金甲  陈浩  刘青玉
作者单位:燕山大学信息科学与工程学院 秦皇岛 066004
基金项目:国家自然科学基金,中国博士后科学基金,河北省博士后专项,首批"河北省青年拔尖人才"
摘    要:
给出了大数据和机器学习的子领域——深度学习的概念,阐述了深度学习对获取大数据中的有价值信息的重要作用。描述了大数据下利用图像处理单元(GPU)进行并行运算的深度学习框架,对其中的大规模卷积神经网络(CNN)、大规模深度置信网络(DBN)和大规模递归神经网络(RNN)进行了重点论述。分析了大数据的容量、多样性、速率特征,介绍了大规模数据、多样性数据、高速率数据下的深度学习方法。展望了大数据背景下深度学习的发展前景,指出在不远的将来,大数据与深度学习融合的技术将会在计算机视觉、机器智能等多个领域获得突破性进展。

关 键 词:大数据  深度学习  卷积神经网络(CNN)  深度置信网络(DBN)  递归神经网络(RNN)

The study of deep learning under big data
Wang Jinjia,Chen Hao,Liu Qingyu. The study of deep learning under big data[J]. High Technology Letters, 2017, 27(1). DOI: 10.3772/j.issn.1002-0470.2017.01.004
Authors:Wang Jinjia  Chen Hao  Liu Qingyu
Abstract:
The concepts of big data and deep learning (a subfield of machine learning) were given, and the importance of deep learning in acquiring valuable information from big data was interpreted.The deep learning framework for concurrent computation using graphics processing unit was described, and its big convolutional neural network (CNN), big deep belief network (DBN) and big recurrent neural network (RNN) were emphatically introduced.The features of big data in volume, variety and velocity were analyzed, and the methods for deep learning under large scale data, variable data and high rate data were introduced.The future development of the research on deep learning under big data was forecasted, and the possibility that the technology of fusing big data and deep learning will make an important breakthrough in the fields such as computer vision and machine intelligence was pointed out.
Keywords:big data  deep learning  convolutional neural network (CNN)  deep belief network(DBN)  recurrent neural network (RNN)
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号