首页 | 本学科首页   官方微博 | 高级检索  
     


Power factor improvement of single‐phase diode rectifier circuit by field‐weakening of inverter‐driven IPM motor
Authors:Isao Takahashi  Hitoshi Haga
Abstract:This paper proposes a novel inverter drive system to improve the input power factor of single‐phase diode rectifier. Conventional rectifiers need a high‐frequency switching device and a reactor to improve the input power factor. However, the proposed power converter does not need the switching device, electrolytic capacitor, or reactor. By making many ripples across the DC‐bus voltage, the input power factor can be improved. The proposed system consists of only a single‐phase diode rectifier, small film capacitor, three‐phase inverter, and motor. The proposed system adopts an interior permanent magnet (IPM) synchronous motor. The IPM motor is well known as a high‐efficiency motor and can realize field weakening. The basic ideas of the inverter control method are based on the following operations: the inverter's controlled synchronous with the DC‐bus ripple voltage by field‐weakening method, and direct active power feeding from the source side to the motor without smoothing the DC‐bus voltage. This paper describes that the proposed method can obtain an input power factor of 97.3% by experimental tests, and realizes the goals of small size and long life of the system. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(2): 66–73, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20047
Keywords:power factor improvement  single‐phase diode rectifier  interior permanent magnet synchronous motor  field‐weakening method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号