首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of sulfide-forming element additions on the Kirkendall void formation and drop impact reliability of Cu/Sn–3.5Ag solder joints
Authors:JY Kim  Jin Yu  SH Kim
Affiliation:Center for Electronic Packaging Materials (CEPM), Department of Materials Science and Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Abstract:Ternary Pb-free solders, Sn–3.5Ag–X, containing 0.5 wt.% of Zn, Mn and Cr, were reacted with Cu UBM, which was electroplated using SPS additive. Characteristics of Cu–Sn IMCs and Kirkendall void formation at the Cu/Sn–3.5Ag solder joints were significantly affected by the third element, and the potency to suppress Kirkendall voids at the solder joint increased in the order of Cr, Mn, Zn, which was indeed the order of the drop reliability improvement. From the AES analyses, it was suggested that the sulfide-forming elements in the solder diffused into the Cu UBM and reduced the segregation of S atoms to the Cu/Cu3Sn interface by scavenging S, which led to the suppression of Kirkendall void nucleation at the Cu/Cu3Sn interface and the drop reliability improvement. In the case of the Zn-containing solder joint, Cu3Sn phase, known to be a host of Kirkendall voids, did not form at all even after extended aging treatments. The magnitude of the tensile stress at the Cu3Sn/Cu interface which drove the Kirkendall void growth was estimated to be 10–100 MPa.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号