首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of four diol dehydrogenases for enantioselective synthesis of chiral vicinal diols
Authors:Jiandong Zhang  Rui Dong  Xiaoxiao Yang  Lili Gao  Chaofeng Zhang  Fan Ren  Jing Li  Honghong Chang
Affiliation:1. Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2. Department of Environmental Engineering, Taiyuan University of Technology, Taiyuan 030024, China;3. Shanxi Xuanran Pharmaceutical Technology Co, Ltd, Jinzhong 030600, China
Abstract:Enantiopure vicinal diols are important building blocks used in the synthesis of fine chemicals and pharmaceutical compounds. Diol dehydrogenase (DDH) mediated stereoselective oxidation of racemic vicinal is an efficient way to prepare enantiopure vicinal diols. In this study, four new bacterial DDHs (AnDDH from Anoxybacillus sp. P3H1B, HcDDH from Hazenella coriacea, GzDDH from Geobacillus zalihae and LwDDH from Leptotrichia wadei) were mined from the GenBank database and expressed in E. coli T7. The four DDHs were purified and biochemically characterized for oxidation activity toward (R)-1-phenyl-1,2-ethanediol, with the optimal reaction condition of pH9.0 (AnDDH), 10.0 (HcDDH) and 11.0 (GzDDH and LwDDH) and the temperatures at 40℃ (AnDDH), 50℃ (HcDDH) and 60℃ (GzDDH and LwDDH), respectively. The four enzymes were stable at the pH from 7.0 to 9.0 and below 40℃. Kinetic parameters of four DDHs showed that the HcDDH from Hazenella coriacea had high activity toward a broad range of vicinal diols. A series of racemic vicinal diols were successfully resolved by recombinant E. coli (HcDDH-NOX) resting cells co-expression of an NADH oxidase (NOX), affording (S)-diols and (1S, 2S)-trans-diols in ≥ 99% ee. The synthetic potential of HcDDH was proved by E. coli (HcDDH-NOX) via kinetic resolution of racemic trans-1,2-indandiol on a 100 ml scale reaction, (S, S)-trans-1,2-indandiol was prepared in 46.7% yield and >99% ee. In addition, asymmetric reduction of four α-hydroxy ketones (10-300 mmol·L-1) by E. coli (HcDDH-GDH) resting cells resulted in >99% ee and 69-98% yields of (R)-vicinal diols. The current research expands the toolbox of DDHs to synthesize chiral vicinal diols and demonstrated that the mined HcDDH is a potential enzyme in the synthesis of a broad range of chiral vicinal diols.
Keywords:Diol dehydrogenases                                              Kinetic resolution                                              Enantioselective                                              Chiral vicinal diols                                              α-Hydroxy ketone
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号