首页 | 本学科首页   官方微博 | 高级检索  
     

复合齿槽U型筋搭接连接装配式剪力墙抗震性能试验研究
引用本文:张锡治,李星乾,章少华,李倩楠,徐盛博. 复合齿槽U型筋搭接连接装配式剪力墙抗震性能试验研究[J]. 建筑结构学报, 2020, 41(11): 79-88. DOI: 10.14006/j.jzjgxb.2019.041
作者姓名:张锡治  李星乾  章少华  李倩楠  徐盛博
作者单位:1. 天津大学建筑设计规划研究总院有限公司, 天津 300072; 2. 天津大学 滨海土木工程结构与安全教育部重点实验室, 天津 300072; 3. 天津大学 建筑工程学院, 天津 300072
基金项目:国家自然科学基金项目(51578369),天津市科技计划项目(19YDLYSN00120)。
摘    要:复合齿槽U型筋搭接连接装配式混凝土剪力墙由预留复合齿槽区预制墙体、暗柱及上下层墙体U型筋连接节点组成。为研究该装配式剪力墙的抗震性能,通过1个现浇和3个预制剪力墙试件的低周反复加载试验,对比分析了各剪力墙的破坏形态、滞回特性、承载力、延性、刚度退化和钢筋应变。结果表明:所有剪力墙破坏形态均为暗柱纵筋压屈、墙体两侧底部混凝土压碎剥落的压弯破坏;采用双填料口能够保证复合齿槽后浇区混凝土的密实度,复合齿槽区形成的暗梁对墙体底部具有强化作用;剪力墙竖向分布钢筋采用U型筋在复合齿槽区搭接连接能够有效传递钢筋应力;相同轴压比条件下,预制剪力墙承载力约为现浇剪力墙的90%;预制剪力墙的极限位移角为1/72~1/51,平均位移延性系数均大于5;同一位移下,预制剪力墙的累积耗能略大于现浇剪力墙。可采用GB 50010—2010中建议公式计算复合齿槽U型筋搭接连接装配式剪力墙的压弯承载力,计算结果偏于安全。

关 键 词:装配式剪力墙  U型筋搭接  复合齿槽连接  低周反复加载试验  抗震性能  压弯承载力

Experimental study on seismic behavior of prefabricated shear wall withcomposite alveolar connection and U-type reinforcements overlap
ZHANG Xizhi,LI Xingqian,ZHANG Shaohua,LI Qiannan,XU Shengbo. Experimental study on seismic behavior of prefabricated shear wall withcomposite alveolar connection and U-type reinforcements overlap[J]. Journal of Building Structures, 2020, 41(11): 79-88. DOI: 10.14006/j.jzjgxb.2019.041
Authors:ZHANG Xizhi  LI Xingqian  ZHANG Shaohua  LI Qiannan  XU Shengbo
Affiliation:1. Tianjin University Research Institute of Architectural Design and Urban Planning Co., Ltd., Tianjin 300072, China;;2. Key Laboratory of Coast Civil Structure Safety of the Ministry of Education, Tianjin University, Tianjin 300072, China;;3. School of Civil Engineering, Tianjin University, Tianjin 300072, China;
Abstract:A new type of connection for prefabricated reinforced concrete shear walls with composite alveolar connection, concealed columns and U-type reinforcements overlap was proposed. In order to investigate its seismic behavior, one cast-in-place and three precast shear wall specimens were tested under cyclic loading. The failure mode, hysteretic characteristic, bearing capacity, ductility, stiffness degradation and strain of reinforcements were compared and analyzed. The results indicate that the failure mode of all specimens is combined compression and bending failure accompanied with tensile yield of longitudinal reinforcements in the concealed column and compressive failure of concrete at the bottom of the wall. The compactness of the concrete at the key groove could be ensured by using double filler, and the hidden beam caused by the composite key groove can strengthen the bottom of the wall. By adopting the U-type reinforcements overlap in composite key groove area, the stresses of vertical reinforcement can be transferred effectively. The bearing capacity of precast specimens is about 90% of the cast-in-place specimen under the same axial compression ratio. The ultimate drift ratios of precast specimens range from 1/72 to 1/51, and the displacement ductility ratio is greater than 5. Moreover, the accumulative energy dissipation of the precast specimens was slightly more than that of the cast-in-place specimen. The current codes GB 50010—2010 can be safely used to calculate the compression-flexural bearing capacity of reinforced concrete shear wall specimens with composite alveolar connection and U-type reinforcements overlap.
Keywords:precast shear wall  U-type steel overlap  composite alveolar connection  cyclic loading test  seismic behavior  compression-flexural bearing capacity  
本文献已被 万方数据 等数据库收录!
点击此处可从《建筑结构学报》浏览原始摘要信息
点击此处可从《建筑结构学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号