首页 | 本学科首页   官方微博 | 高级检索  
     

基于大规模船舶轨迹数据的航道边界提取方法
引用本文:徐垚,李卓然,孟金龙,赵利坡,温建新,王桂玲. 基于大规模船舶轨迹数据的航道边界提取方法[J]. 计算机应用, 2019, 39(1): 105-112. DOI: 10.11772/j.issn.1001-9081.2018071739
作者姓名:徐垚  李卓然  孟金龙  赵利坡  温建新  王桂玲
作者单位:中电科海洋信息技术研究院有限公司岸基信息系统部,北京,100041;大规模流数据集成与分析技术北京市重点实验室(北方工业大学),北京100144;北方工业大学计算机学院,北京100144
基金项目:国家自然科学基金资助项目(61832004,61672042);北京市自然科学基金资助项目(4172018);中电科海洋信息技术研究院有限公司高校合作课题项目(402054841879);北方工业大学毓优团队培养计划项目(107051360018XN012/020)。
摘    要:
传统的道路数据获取方法成本高、更新慢等无法适用于海洋航道的获取,从众源轨迹数据中提取道路或航道信息具有成本低、更新快等特性,然而,由于船舶轨迹数据噪声多、数据量大、不同区域分布不均使得航道边界提取面临较大挑战。针对该问题,提出一种基于大规模船舶轨迹数据进行航道边界提取的方法。首先对大规模的船舶轨迹数据进行并行化去噪、插值、轨迹分段;然后,基于并行化及基于Geohash编码的空间聚类,将轨迹数据化简为多个方形区域的点集数据;其次,对其进行窗口划分,对传统的Ni Black方法进行扩展,提出Spatial Ni Black算法,对方形区域进行航道识别;最后,提出一种新的提取算法del-alpha-shape,基于航道识别结果获得航道边界。理论分析与实验结果表明,所提方法在最大密度值是200,最小密度值是10,窗口长和宽分别为5和5时,可同时达到86. 7%的准确率和79. 4%的召回率。实验结果表明,该方法可以从大规模的轨迹数据中提取有价值的航道边界,是一种有效的航道提取方法。

关 键 词:轨迹数据  自动识别系统  时空大数据  DELAUNAY三角网  航道提取
收稿时间:2018-07-19
修稿时间:2018-08-29

Extraction method of marine lane boundary from exploiting trajectory big data
XU Yao,LI Zhuoran,MENG Jinlong,ZHAO Lipo,WEN Jianxin,WANG Guiling. Extraction method of marine lane boundary from exploiting trajectory big data[J]. Journal of Computer Applications, 2019, 39(1): 105-112. DOI: 10.11772/j.issn.1001-9081.2018071739
Authors:XU Yao  LI Zhuoran  MENG Jinlong  ZHAO Lipo  WEN Jianxin  WANG Guiling
Affiliation:1. Shore-based Information System Department, Ocean Information Technology Research Institute Co., Ltd, China Electronics Technology Group Corporation(CETC Ocean Corp.), Beijing 100041, China;2. Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data(North China University of Technology), Beijing 100144, China;3. School of Computer, North China University of Technology, Beijing 100144, China
Abstract:
The traditional road information extraction method is high-cost and slow-update. Compared with it, road or marine lane information extraction from crowdsourcing trajectory data is low-cost and easier to update. However, it is difficult to extract lane boundary due to vessel trajectory data with high noise, large data volume and uneven distribution across different regions. To solve this problem, an extraction method of marine lane boundary from exploiting trajectory big data was proposed. Firstly, the parallelized denoising, interpolation and trajectory segmentation for trajectory big data was conducted. Then, based on parallelization and Geohash-encoded spatial clustering, trajectory data was simplified into multiple square regions. The regions were divided and the NiBlack method was extended as SpatialNiBlack algorithm to recognize regions on lane. Finally, based on the filtering results, del-alpha-shape algorithm was proposed to construct a Delaunay triangulation network and obtain marine lane boundary. The theoretical analysis and experimental results show that the proposed method can achieve an accuracy of 86.7% and a recall rate of 79.4% when the maximum density value is 200, minimum density value is 10, length and width of window are 5 and 5 respectively. The experimental results show that the proposed method is effective to extract valuable marine lane boundaries from large-scale trajectory data.
Keywords:trajectory data  Automatic Identification System (AIS)  spatio-temporal big data  Delaunay triangulation network  marine lane extraction  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号