首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of OFDM Signals in Fast-Varying Channels With Low-Density Pilot Symbols
Authors:Ming-Xian Chang Tsung-Da Hsieh
Affiliation:Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan;
Abstract:
In fast-varying channels, an orthogonal frequency-division multiplexing system needs to insert denser pilot symbols among transmitted symbols in tracking the variation of a channel. However, using denser pilot symbols reduces transmission throughput. In this paper, we propose a pseudopilot algorithm for data detection in fast-varying channels without increasing the pilot density. Our algorithm is based on a regressional model-based least-squares-fitting approach. Within a block of received symbols, we select some data symbols and regard them as pseudopilot symbols. The receiver considers all the possible patterns of the pseudopilots and associates each of them with a data sequence and a corresponding metric. The associated data sequence, whose metric is minimum, is selected as the detected data sequence. Our algorithm is not based on a decision-directed or decision-feedback architecture because the pseudopilots do not come from any detected symbols. The proposed algorithm needs to search all the possible patterns of the pseudopilots, and the complexity may increase with the number of pseudopilots and constellation size. To reduce the number of search, we further propose two modified approaches. The simulation results show that the performance of the proposed algorithms could approach a bit-error probability lower bound that is obtained by letting the receiver know the true values of the pseudopilots. Compared with the linear interpolation method, the proposed algorithm shows obvious improvement in fast-varying channels. The proposed modified approaches could also effectively reduce the number of search while maintaining the performance. We also give the complexity analysis of the proposed algorithm and an approach to determine the degree of the regression polynomial.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号